Answer:
Option A,B
Explanation:
Concept involved
We know,
|x|={xx≥0−x,x<0
⇒ |x−a|={x−ax≥0−(x−a)x<a
and for non-differentiable continuous function the maximum or minimum Can be checked with graph as

Here f(x) =2|x|+|x+2| -||x+2|-2|x||
={−2x−(x+2)+(x+2),whenx≤−2−2x+x+2+3x+2,when−2<x≤−2/3−4xwhen−23<x≤04x,when0<x≤22x+4,whenx>2
={−2x−4,x≤−22x+4,−2<x≤−2/3−4x−23<x≤04x,0<x≤22x+4,x>2
Graph for y=f(x) is shown as
