1)

Let ω be a complex cube root of unity with ω ≠ 1 and P=[pij] be a n x n matrix with pij  =ω i+j. Then, P2≠ 0, when n is equal to 


A) 57

B) 55

C) 58

D) 56

Answer:

Option B,C,D

Explanation:

Here , P=[pij]nxn with pij=wi+j

  when n=1

 P=[pij]1×1=[w2]p2=[w4]0

  when n=2

P=[pij]2×2=[p11p12p21p22]=[w2w3w3w4]=[w211w]

p2=[w211w][w211w]

p2=[w4+1w2+ww2+w1+w2]0

when n=3

p=[pij]3×3=[w2w3w4w3w4w5w4w5w6]

    =[w21w1ww2ww21]

 p2=[w21w1ww2ww21][w21w1ww2ww21]

=[000000000]=0

  p2=0, when n  is mutilple of 3

p20  , when n is not a multiple of 3

  n=57 is not possible

    n=55,58,56 is possible