Answer:
Option A,B,C
Explanation:
$3^{x}=4^{x-1}$ , taking log3on both sides
$\Rightarrow$ $ x\log_3^3=(x-1)\log_3^4$
$\Rightarrow x=2 \log_3^2.x-\log_3^4$
$\Rightarrow $ $x(1-2\log_3^2)=-2\log_3^2$
$\Rightarrow$ $ x=\frac{2\log_3^2}{2\log_3^2-1}$
$\Rightarrow x=\frac{1}{1-\frac{1}{2\log_3^2}}=\frac{1}{1-\frac{1}{\log_3^4}}=\frac{1}{1-\log_3^4}$
$\Rightarrow x=\frac{2}{2-\log_2^3}$