1)

A point charge Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity ω. This can be considered as equivalent to a loop carrying a steady current   $\frac{Q\omega}{2\pi}$. A uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of the orbit remains constant. The applications of the magnetic field induce an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It is known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportionality constant $\gamma$.

The change in the magnetic dipole  moment associated with the orbit, at the end of the time interval  of the magnetic field change is 


A) $\gamma BQR^{2}$

B) $-\gamma \frac{BQR^{2}}{2}$

C) $\gamma\frac{BQR^{2}}{2}$

D) $ BQR^{2}$

Answer:

Option B

Explanation:

$\frac{M}{L}=\frac{Q}{2m}$

1052021364_p2.JPG

$\therefore$   $M=(\frac{Q}{2m})L$

 $\Rightarrow$   $ M\propto L,$   where $ \gamma=\frac{Q}{2m}$

$=\left(\frac{Q}{2m}\right)(l\omega)$

$=\left(\frac{Q}{2m}\right)(mR^{2}\omega)=\frac{Q\omega R^{2}}{2}$

Induced  electric field is opposite.

 Therefore   $\omega'=\omega-\alpha t$

 $\alpha=\frac{\tau}{I}=\frac{(QE)R}{mR^{2}}=\frac{(Q)(\frac{BR}{2})R}{mR^{2}}=\frac{QB}{2m}$

  $\therefore$    $\omega'=\omega-\frac{QB}{2m}.1=\omega-\frac{QB}{2m}$

$M_{f}=\frac{Q\omega' R^{2}}{2}=Q(\omega-\frac{QB}{2m})\frac{R^{2}}{2}$

$\therefore$   $\triangle M=M_{f}-M_{i}=-\frac{Q^{2}BR^{2}}{4m}$

 $M=-\gamma \frac{QBR^{2}}{2}$                      $(as\gamma=\frac{Q}{2m})$