Answer:
Option D
Explanation:
$2d\sin\theta=\lambda$
$d=\frac{\lambda}{2\sin\theta}$
Differentiate $\partial(d)=\frac{\lambda}{2}\partial( cosec \theta)$
$\partial(d)=\frac{\lambda}{2}( -cosec \theta\cot\theta)\partial\theta$
$\partial(d)=\frac{-\lambda\cos\theta}{2\sin^{2}\theta}$
as $\theta$ = increases, $\frac{\lambda\cos\theta}{2\sin^{2}\theta}$ decreases