Answer:
Option D
Explanation:
Concept involved
For the events to be independent.
$P(E_{1}\cap E_{2}\cap E_{3})=P(E_{1}) P(E_{2})P(E_{3})$
$P(E_{1}\cap \overline{E}_{2}\cap \overline{E}_{3})=P$
(on;y E1 occurs)
= $P(E_{1}).(1-P(E_{2}))(1-P(E_{3}))$
let x,y,z are probability of $E_{1}$, $E_{2}$ and $E_{3}$ respectively
$\therefore$ $\alpha$ = x(1-y)(1-z) ......(i)
$\beta$ = (1-x).y(1-z) ......(ii)
$\gamma$ = (1-x)(1-y) z ..........(iii)
$\Rightarrow$ p = (1-x) (1-y) (1-z) ..........(iv)
Given $(\alpha-2\beta)p=\alpha\beta$
and $(\beta-3\gamma)p=2\beta\gamma$ .......(v)
From above equations
x=2y and y=3 z
$\therefore$ x=6z = $\frac{x}{z}=6$