1)

Let  f(x)= x sin  $\pi$ x, x>0 . Then for all natural numbers n, f'(x) vanishes at 


A) a unique point in the interval $(n,n+\frac{1}{2})$

B) a unique point in the interval $(n+\frac{1}{2},n+1)$

C) a unique point in the interval (n,n+1)

D) two pints in the interval (n,n+1)

Answer:

Option B,C

Explanation:

Concept involved

 This question is based on the concept of transcendal  equation and sholud be solved with the help of graph

f(x)= x sin  $\pi$ x, x>0

$f'(x)= sin\pi x+\pi xcos \pi x=0$

$\Rightarrow$   $ tan \pi x=-\pi x$

 let f(x) = tan $\pi$ x  and g(x)= - $\pi$ x

 which could be  plotted as,

952021673_m9.JPG

 

 clearly , f(x) and g(x)  intersect when

 $\frac{1}{2}< x<1$

  or            $\frac{3}{2}< x<2$

 or     $\frac{5}{2}< x<3$

 $\therefore$  a unique point in   $(n+\frac{1}{2},n+1)$

 or  (n,n+1)