Answer:
Option A,D
Explanation:
Concept involved
It is to convert into differences and using sum of n terms of AP
i.e, $S_{n}=\frac{n}{2}[2a+(n-1)d]$
$S_{n}=\sum_{k=1}^{4n}(-1)^{\frac{k(k+1)}{2}}k^{2}$
$=-(1)^{2}-2^{2}+3^{2}+4^{2}-5^{2}-6^{2}+7^{2}+8^{2}+....$
$=(3^{2}-1^{2})+(4^{2}-2^{2})+(7^{2}-5^{2})+(8^{2}-6^{2})+....$
= 2{(4+6+12+...) +(6+14+22+...)}
n terms n terms
$=2\left[\frac{n}{2}\left\{2\times 4+(n+1)8\right\}+\frac{n}{2}\left\{ 2\times 6+(n-1)8\right\}\right]$
=2[n(4+4n-4)+n(6+4n-4)]
=2[4n2+4n2+2n] =4n(n+1)
Here, 1056=32 x33, 1088=32 x34, 1120=32 x35, 1332=36x37
1056 and 1332 are possible answers