Answer:
Option A,C
Explanation:
Concept involved
The problem is based on the concept to maximize the volume of a cuboid
i.e, to form a function of volume , say f(x) find f'(x) and f"(x).
Put f'(x) =0 and check f'(x) to be +ve or -ve for minimum and maximum, respectively
Here, l=15x-2a, b=8x-2a
h=a
$\therefore$ Volume =(8x-2a)(15x-2a)a
V=2a(4x-a)(15x-2a)....(i)
$\frac{dv}{da}=6a^{2}-46ax+60x^{2}$
$\frac{d^{2}v}{da^{2}}=12a-46x$
Here, $(\frac{dv}{da})=0$
$\Rightarrow $ $ 6x^{2}-23x+15=0$
at $a=5\Rightarrow x=3,\frac{5}{6}$
$\left(\frac{d^{2}v}{da^{2}}\right)=2(30-23x)$
at x=3, $\left(\frac{d^{2}v}{da^{2}}\right)$ =2(30-69)<0
$\therefore$ Maximum when x=3,
also at $x=\frac{5}{6}\Rightarrow \left(\frac{d^{2}v}{da^{2}}\right)>0$
$\therefore$ at x=5/6 , volume is minimum
Thus, sides are 8x=24 and 15 x=45