Answer:
Option D
Explanation:
Concept involved
When evere we have linear differential equation containing inequality we should always check for increasing or decreasing
i.e, for dydx+Py<0
⇒ dydx+Py>0
Multiply by integrating factor i.e, e∫Pdx and convert into total differential equation
Here, f'(x) <2 f(x) , multiplying by e−∫2dx
f′(x).e−2x−2e−2xf(x)<0
⇒ ddx(f(x).e−2x)<0
∴ ϕ(x)=f(x)e−2x is decreasing for x∈[12,1]
thus, when x >1/2
ϕ(x)<ϕ(12)
⇒ e−2xf(x)<e−1.f(12)
⇒ f(x)<e2x−1.1givenf(12)=1
⇒ 0<∫11/2f(x)dx<∫11/2e2x−1dx
⇒ 0<∫11/2f(x)dx<(e2x−12)11/2
⇒ 0<∫11/2f(x)dx<e−12