Answer:
Option D
Explanation:
Concept involved
When evere we have linear differential equation containing inequality we should always check for increasing or decreasing
i.e, for $\frac{dy}{dx}+Py<0$
$\Rightarrow$ $\frac{dy}{dx}+Py>0$
Multiply by integrating factor i.e, $e^{\int_{}^{}Pdx }$ and convert into total differential equation
Here, f'(x) <2 f(x) , multiplying by $e^{-\int_{}^{}2dx }$
$f'(x).e^{-2x}-2e^{-2x}f(x)<0$
$\Rightarrow$ $ \frac{d}{dx} (f(x).e^{-2x}) <0$
$\therefore$ $\phi(x)=f(x)e^{-2x}$ is decreasing for $x \in \left[\frac{1}{2},1\right]$
thus, when x >1/2
$\phi(x) < \phi(\frac{1}{2})$
$\Rightarrow$ $ e^{-2x} f(x)<e^{-1}.f(\frac{1}{2})$
$\Rightarrow$ $ f(x)<e^{2x-1}.1 given f(\frac{1}{2})=1$
$\Rightarrow$ $0< \int_{1/2}^{1} f(x) dx <\int_{1/2}^{1} e^{2x-1}dx$
$\Rightarrow$ $0< \int_{1/2}^{1} f(x) dx <\left(\frac{e^{2x-1}}{2}\right)^{1}_{1/2}$
$\Rightarrow$ $0< \int_{1/2}^{1} f(x) dx <\frac{e-1}{2}$