Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

let   f:[12,1]R ( the set of all real numbers) be a positive, non -constant and differentiable function such that f'(x)<2f(x)  and   f(12)=1   .Then , the value of   11/2f(x)dx lies in the interval 


A) (2e1,2e)

B) (e-1,2e-1)

C) (e12.e1)

D) (0,e12)

Answer:

Option D

Explanation:

Concept involved 

 When evere we have linear differential equation containing inequality we should always check for increasing or decreasing 

i.e, for    dydx+Py<0

        dydx+Py>0

 Multiply by integrating factor i.e, ePdx  and  convert into total differential equation

 Here, f'(x) <2 f(x) , multiplying by  e2dx

 f(x).e2x2e2xf(x)<0

      ddx(f(x).e2x)<0

     ϕ(x)=f(x)e2x   is decreasing for   x[12,1]

 thus, when  x >1/2

       ϕ(x)<ϕ(12)

      e2xf(x)<e1.f(12)

       f(x)<e2x1.1givenf(12)=1

      0<11/2f(x)dx<11/2e2x1dx

     0<11/2f(x)dx<(e2x12)11/2

        0<11/2f(x)dx<e12