Answer:
Option A
Explanation:
Concept involved
solving of homogeneous differential equation i.e, substitute $\frac{y}{x}=v$
$\therefore$ y=vx
$\frac{dy}{dx}=v+x \frac{dv}{dx}$
here, slope of the curve at (x, y) is
$\frac{dy}{dx}=\frac{y}{x}+sec(\frac{y}{x})$
put $\frac{y}{x}$=v
$\therefore$ $v+x \frac{dv}{dx}=v+sec(v)$
$\Rightarrow $ $ x \frac{dv}{dx}=\sec (v)$
$\Rightarrow$ $ \int_{}^{} \frac{dv}{\sec v}=\int_{}^{} \frac{dx}{x}$
$\Rightarrow$ $ \int_{}^{} \cos v dv=\int_{}^{} \frac{dx}{x}$
$\Rightarrow $ $ \sin v=\log x+\log c$
$\Rightarrow$ $ \sin (\frac{y}{x})=\log (cx)$
as it passes through $(1,\frac{\pi}{6})$
$\Rightarrow $ $ \sin(\frac{\pi}{6})=\log c$
$\Rightarrow \log c=\frac{1}{2}$
$\therefore$ $\sin(\frac{y}{x})=\log x+\frac{1}{2}$