Answer:
Option C
Explanation:
Plan $\triangle _{c}H^{0}$ (standard heat of combustion ) is the standard enthalpy change when one mole of the substance is completely oxidised.
Also standard heat of formation ( $\triangle _{f}H^{0}$ ) can be taken as the standard of their substance.
$H^{0}_{H_{2}O}=\triangle_{f}H^{0}(H_{2}O)=-300kJmol^{-1}$
$H^{0}_{glucose }=\triangle_{f}H^{0}(glucose)=-1300kJmol^{-1}$
$H^{0}_{O_{2} }=\triangle_{f}H^{0}(O_{2})=0.00$
$C_{6}H_{12}O_{6}(s)+6O_{2}(g)\rightarrow 6CO_{2}(g)+6H_{2}O(l)$
$\triangle_{c}H^{0} (glucose)$
= $6[\triangle_{f}H^{0}(CO_{2})+\triangle_{f}H^{0} (H_{2}O)]$
- $[\triangle_{f}H^{0}(C_{6}H_{12}O_{6})+6\triangle_{f}H^{0} O_{2})]$
=6[-400-300]-[-1300+6 X0]
=-2900 kJ mol-1
Molar mass of C6H12O6= 180 g mol-1
Thus, standard heat of combustion of glucose per gram
= $\frac{-2900}{180}=-16.11kJ g^{-1}$