1)

Let X and Y be two events such that  P(X|Y)=12,P(Y|X)=13 and  P(XY)16 , which of the following is/are correct?


A) P(XY)=2/3

B) X and Y are independent

C) X and Y are not independent

D) P(XcY)=1/3

Answer:

Option A,B

Explanation:

 Concept involved 

(i) Conditional probability i.e

P(A/B)=P(AB)P(B)

  (ii) P(AB)=P(A)+P(B)P(AB)

(iii) independent event, then

 P(AB)=P(A).P(B)

  sol. Here, P(X/Y)=12,P(YX)=13

 and   P(XY)=6

 18112021951_k2.PNG

  P(XY)=P(XY)P(Y)

   12=1/6P(Y)

   P(Y)=13............(i)

    P(YX)=13

     P(XY)P(X)=13

  16=13P(X)

  P(X)=12...........(ii)

 p(XY)=P(X)+P(Y)P(XY)

 =12+1316=23..........(iii)

   P(XY)=16

 and    P(X)P(Y)=1213=16

   P(XY)=P(X).P(Y)

  Independent events ...........(iv)

   P(XcY)=P(Y)P(XY)

  =1316=16 ..........(iv)