Answer:
Option A,B
Explanation:
Concept involved
(i) Conditional probability i.e
P(A/B)=P(A∩B)P(B)
(ii) P(A∪B)=P(A)+P(B)−P(A∩B)
(iii) independent event, then
P(A∩B)=P(A).P(B)
sol. Here, P(X/Y)=12,P(YX)=13
and P(X∩Y)=6

∴ P(XY)=P(X∩Y)P(Y)
⇒ 12=1/6P(Y)
⇒ P(Y)=13............(i)
P(YX)=13
⇒ P(X∩Y)P(X)=13
⇒ 16=13P(X)
∴ P(X)=12...........(ii)
p(X∪Y)=P(X)+P(Y)−P(X∩Y)
=12+13−16=23..........(iii)
P(X∩Y)=16
and P(X)P(Y)=1213=16
⇒ P(X∩Y)=P(X).P(Y)
⇒ Independent events ...........(iv)
P(Xc∩Y)=P(Y)−P(X∩Y)
=13−16=16 ..........(iv)