1)

A tangent PT is drawn to the circle $x^{2}+y^{2}=4$ at the point $P(\sqrt{3},1)$ . a straight line L perpendicular to PT is a tangent to thye circle $(x-3)^{2}+y^{2}=1$

A possible equation of L is 


A) $x-\sqrt{3}y=1$

B) $x+\sqrt{3}y=1$

C) $x-\sqrt{3}y=-1$

D) $x+\sqrt{3}y=5$

Answer:

Option A

Explanation:

(i) Equation of a tangent to at (x1,y1) is 

x2+y2=r2

232202268_hhhhhh.png 

at (x1,y1) is 

xx1+yy1=r2

(ii)If ax+by+c =0 is tangent to (x-h)2+(y-k)2=r2

|cp|=r

Here tangent to $x^{2}+y^{2}=4$ at the point

$P(\sqrt{3},1)$  is $\sqrt{3} x+y=4$.............(i)

 As. L is perpendicular to $\sqrt{3} x+y=4$

 $\Rightarrow$  $x-\sqrt{3}y= \lambda$

 which is tangnet to $(x-3)^{2}+y^{2}=1$

 $\Rightarrow$   $\frac{|3-0-\lambda|}{\sqrt{1+3}}=1$

$\Rightarrow$  $|3-\lambda|=2$

$\Rightarrow$  $3-\lambda=2,-2$

  $\therefore$  $\lambda=1,5$

 $\Rightarrow$  $L:x- \sqrt{3} y=1, x-\sqrt{3}y=5$