Answer:
Option A
Explanation:
(i) Equation of a tangent to at (x1,y1) is
x2+y2=r2
at (x1,y1) is
xx1+yy1=r2
(ii)If ax+by+c =0 is tangent to (x-h)2+(y-k)2=r2
|cp|=r
Here tangent to x2+y2=4 at the point
P(√3,1) is √3x+y=4.............(i)
As. L is perpendicular to √3x+y=4
⇒ x−√3y=λ
which is tangnet to (x−3)2+y2=1
⇒ |3−0−λ|√1+3=1
⇒ |3−λ|=2
⇒ 3−λ=2,−2
∴ λ=1,5
⇒ L:x−√3y=1,x−√3y=5