Answer:
Option D
Explanation:
(i) Equation of a tangent to at (x1,y1) is
x2+y2=r2
at (x1,y1) is
xx1+yy1=r2
(ii)If ax+by+c =0 is tangent to (x-h)2+(y-k)2=r2
|cp|=r
Here, equation of common tangnet be
$y=mx \pm 2\sqrt{1+m^{2}}$
which is also the tangent to
$(x-3)^{2}+y^{2}=1$
$\Rightarrow$ $\frac{|3m-0+2\sqrt{1+m^{2}}|}{\sqrt{m^{2}+1}}=1$
$\Rightarrow$ $3m+2\sqrt{1+m^{2}}=\pm \sqrt{1+m^{2}}$
$\Rightarrow$ $3m=-3 \sqrt{1+m^{2}}$
or $3m=-\sqrt{1+M^{2}}$
$\Rightarrow$ $m^{2}=1+m^{2}$
or $9m^{2}=1+m^{2}$
$\Rightarrow$ $m \epsilon \phi$ or $m=\pm \frac{1}{2 \sqrt{2}}$
$\therefore$ $y=\pm \frac{1}{2 \sqrt{2}} x \pm 2\sqrt{1+\frac{1}{8}}$
$\Rightarrow$ $y=\pm \frac{x}{2 \sqrt{2}}\pm \frac{6}{2\sqrt{2}}$
$\Rightarrow$ $2 \sqrt{2} y= \pm (x+6)$