Answer:
Option D
Explanation:
(i) Equation of a tangent to at (x1,y1) is
x2+y2=r2
at (x1,y1) is
xx1+yy1=r2
(ii)If ax+by+c =0 is tangent to (x-h)2+(y-k)2=r2
|cp|=r
Here, equation of common tangnet be

y=mx±2√1+m2
which is also the tangent to
(x−3)2+y2=1
⇒ |3m−0+2√1+m2|√m2+1=1
⇒ 3m+2√1+m2=±√1+m2
⇒ 3m=−3√1+m2
or 3m=−√1+M2
⇒ m2=1+m2
or 9m2=1+m2
⇒ mϵϕ or m=±12√2
∴ y=±12√2x±2√1+18
⇒ y=±x2√2±62√2
⇒ 2√2y=±(x+6)