Answer:
Option B
Explanation:
Concept involved if a,b,c are any three vectors
then|a+b+c|2≥0
⇒ |a|2+|b|2+|c|2+2(a.b+b.c+c.a)≥0
∴ a.b+b.c+c.a≥−12(|a|2+|b|2+|c|2)
Sol.Given |a−b|2+|b−c|2+|c−a|2=9
⇒ |a|2+|b|2−2a.b+|b|2+|c|2−2b.c+|c|2+|a|2−2c.a=9
⇒ 6−2(a.b+b.c+c.a)=9 (∵|a|=|b|=|c|=1)
⇒ a.b+b.c+c.a=-32....(i)
Also, a.b+b.c+c.a ≥−12(|a|2+|b|2+|c|2)≥−32....(ii)
From eq.(i) and (ii) , we get
|a+b+c|=0
as a.b+b.c+c.a is minimum when |a+b+c|=0
⇒ a+b+c=0
∴ |2a+5b+5c|=|2a+5(b+c)|=|2a-5b|=3