Answer:
Option A
Explanation:
Concept involved
use of infinite series
i.e if y=√x√x√x....∞⇒y=√xy
sol.
6+log3/2
(13√2√4−13√2√4−13√2√4−13√2)
Let √4−13√2√4−13√2√....=y
∴ y=√4−13√2y
⇒ y2+13√2y−4=0
⇒ 3√2y2+y−12√2=0
∴ y=−1±176√2 or y=83√2
Now,
6+log3/2(13√2.y)=6+log3/2(13√2.83√2)
=6+log3/2(49)=6+log3/2(32)−2
=6−2log3/2(32)=4