Answer:
Option C
Explanation:
Concept involved equation of an ellipse is
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (a >b)
Ecentricity $e^{2}=1-\frac{b^{2}}{a^{2}}$ (a >b)
Description of Situation As ellipse circumscribes the rectangle, then it must
pass through all four vertices.
Sol. Let the equation of Ellipse $E_{2}$ be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ , where a<b and b=4
Also, it passes through (3,2)
$\Rightarrow$ $\frac{9}{a^{2}}+\frac{4}{b^{2}}=1$ $(\because$ b=4)
$\Rightarrow$ $\frac{9}{a^{2}}+\frac{1}{4}=1 $ or $a^{2}=12$
Eccentricity of $E_{2}$
$\Rightarrow$ $e^{2}=1-\frac{a^{2}}{b^{2}}=1-\frac{12}{16}=\frac{1}{4}$ $( \because $ a <b)
$\therefore$ e=$\frac{1}{2}$