Answer:
Option A
Explanation:
Concept Involved if
$S: ax^{2}+2hxy+by^{2}+2gx+2fy+c$
then equation of chord bisected at P (x1,y1) is T=S1
or $axx_{1}+h(xy_{1}+yx_{1})+byy_{1}+g(x+x_{1})+f(y+y_{1})+C$
=$ax_{1}^{2}+2hx_{1}y_{1}+by_{1}^{2}+2gx_{1}+2fy_{1}+C$
Description of Situation As equation of
chord of contact is T= 0
Sol. Here, equation of chord of contact wrt P is
$x\lambda+y\left(\frac{4\lambda-20}{5}\right)=9$
$5 \lambda x+(4 \lambda-20)y=45$ .........(i)
and equation of chord bisected at the point Q (h, k) is
$xh+yk-9=h^{2}+k^{2}-9$
$\Rightarrow$ $xh+ky=h^{2}+k^{2}$.....(ii)
From Eqs.(i) and (ii) We get
$\frac{5 \lambda}{h}=\frac{4 \lambda-20}{k}=\frac{45}{h^{2}+k^{2}}$
$\therefore$ $\lambda=\frac{20h}{4h-5k}$ and $\lambda=\frac{9h}{h^{2}+k^{2}}$
$\Rightarrow$ $\frac{20h}{4h-5k}=\frac{9h}{h^{2}+k^{2}}$
or $20(h^{2}+k^{2})=9(4h-5k)$
or $20(x^{2}+y^{2})=36x-45y$