1)

The locus of the end point of the chord of contact of tangents drawn from points lying on the straight line 4x-5y=20 to the circle x2+y2=9 is 


A) 20(x2+y2)36x+45y=0

B) 20(x2+y2)36x45y=0

C) 20(x2+y2)20y+45y=0

D) 20(x2+y2)+20x45y=0

Answer:

Option A

Explanation:

Concept Involved if 

 S:ax2+2hxy+by2+2gx+2fy+c

then equation of chord bisected at P (x1,y1) is T=S1

 or axx1+h(xy1+yx1)+byy1+g(x+x1)+f(y+y1)+C

       =ax21+2hx1y1+by21+2gx1+2fy1+C

Description of Situation As equation of
chord of contact is T= 0

 24112021851_t1.PNG

 

Sol. Here, equation of chord of contact wrt  P is 

xλ+y(4λ205)=9

 5λx+(4λ20)y=45  .........(i)

 24112021119_t2.PNG

 

and equation of chord bisected at the point Q (h, k) is

 xh+yk9=h2+k29

  xh+ky=h2+k2.....(ii)

From Eqs.(i) and (ii)   We get

 5λh=4λ20k=45h2+k2

  λ=20h4h5k and   λ=9hh2+k2

   20h4h5k=9hh2+k2

 or   20(h2+k2)=9(4h5k)

or     20(x2+y2)=36x45y