Answer:
Option B
Explanation:
Concept involved (∞∞) form
limx→∞a0xn+a1xn−1+.....+anb0xm+b1xm−1+.....+bm
={0,ifn=ma0b0,ifn<m+∞,ifn>manda0b0>0−∞ifn>manda0b0<0
Description of Situation As to make degree of numerator equal to degree of denominator.
Sol. limx→∞(x2+x+1x+1−ax−b)=4
⇒ limx→∞x2+x+1−ax2−ax−bx−bx+1=4
⇒ limx→∞x2(1−a)+x(1−a−b)+(1−b)x+1=4
Here, we make degree of Nr = degree of Dr
∴ 1-a=0
and limx→∞x(1−a−b)+(1−b)x+1=4
⇒ 1-a-b=4
⇒ b=-4 [∵(−a)=0]