Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

if  limx(x2x+1x+1axb)=4 , then


A) a=1,b=4

B) a=1,b=-4

C) a=2,b=-3

D) a=2,b=3

Answer:

Option B

Explanation:

Concept involved   () form

 limxa0xn+a1xn1+.....+anb0xm+b1xm1+.....+bm

={0,ifn=ma0b0,ifn<m+,ifn>manda0b0>0ifn>manda0b0<0

Description of Situation As to make degree of numerator equal to degree of denominator.

Sol. limx(x2+x+1x+1axb)=4

   limxx2+x+1ax2axbxbx+1=4

  limxx2(1a)+x(1ab)+(1b)x+1=4

 Here, we make degree of Nr = degree of Dr

   1-a=0

 and  limxx(1ab)+(1b)x+1=4

    1-a-b=4

   b=-4   [(a)=0]