Answer:
Option D
Explanation:
The first order process $kt=ln \frac{[A]_{0}}{[A]}$ where ,$[A]_{0}$=initial concentration
[A]=concentration of reactant remaining at time 't'
$\Rightarrow$ $kt_{1/8}=ln \frac{[A]_{0}}{[A]_{0}/8}=ln 8$..........(i)
and $kt _{1/10}=ln \frac{[A]_{0}}{[A]_{0}/10}=ln 10$
Therefore,
$\frac{t_{1/8}}{t_{1/10}} =\frac{ln 8}{ln 10}=\log 8=3 \log 2$
=$3 \times 0.3=0.9$
$\Rightarrow$ $\frac{t_{1/8}}{t_{1/10}} \times 10=0.9 \times 10=9$