Answer:
Option D
Explanation:
T= total portion
R= Remaining portion and
C= cavity and
let $\sigma=$ mass per unit area
then, $m_{T}=\pi (2R)^{2} \sigma=4 \pi R^{2} \sigma$
$m_{C}=\pi (R)^{2} \sigma=\pi r^{2} \sigma$
For $I_{P}$
$I_{R}=I_{T}-I_{C}$
=$\frac{3}{2}m_{T}(2R)^{2}-\left[\frac{1}{2} m_{C}R^{2}+m_{C}r^{2}\right]$
=$\frac{3}{2}(4\pi R^{2} \sigma)(4R^{2})-\left[\frac{1}{2}(\pi R^{2} \sigma)+(\pi R^{2} \sigma)(5R^{2})\right]$
=($18.5 \pi R^{4} \sigma)$
For $I_{0}$
=$\frac{1}{2}m_{T}(2R)^{2}-\frac{3}{2}m_{C}R^{2}$
=$\frac{1}{2}(4 \pi R^{2}\sigma)(4R^{2})-\frac{3}{2}(\pi R^{2} \sigma)(R^{2})$
=$6.5 \pi R^{4} \sigma$
$\therefore$ $\frac{I_{P}}{I_{Q}}=\frac{18.5 \pi R^{4} \sigma}{6.5 \pi R^{4} \sigma}=2.846$
Therefore, the nearest integer is 3.