Answer:
Option A
Explanation:
Volume of cylinder per unit length (l=1)is
V=πR2l=(πR2)
∴ Charge per unit length
λ= (volume per unit length ) x ( volume charge density)
=(πR2ρ)
Now at P
ER=ET−EC
R= remaining portion
T= total portion and
C= cavity
∴
ER=λ2πϵ0(2R)−14πϵ0Q(2R)2
Q= charge on sphere
=43π(R2)3ρ=πR3ρ6
Substituting the values , we have
ER=(πR2ρ)4πϵ0R−14πϵ0.(πR3ρ/6)4R2
=23ρR96ϵ0=23ρR(16)(6)ϵ0
∴ k=6