Answer:
Option A
Explanation:
Volume of cylinder per unit length (l=1)is
$V= \pi R^{2}l=(\pi R^{2})$
$\therefore$ Charge per unit length
$\lambda=$ (volume per unit length ) x ( volume charge density)
$=(\pi R^{2} \rho)$
Now at P
$E_{R}=E_{T}-E_{C}$
R= remaining portion
T= total portion and
C= cavity
$\therefore$
$E_{R}=\frac{\lambda}{2\pi\epsilon_{0}(2R)}-\frac{1}{4 \pi\epsilon_{0}}\frac{Q}{(2R)^{2}}$
Q= charge on sphere
$=\frac{4}{3}\pi\left(\frac{R}{2}\right)^{3}\rho=\frac{\pi R^{3} \rho}{6}$
Substituting the values , we have
$E_{R}=\frac{(\pi R^{2} \rho)}{4 \pi\epsilon_{0}R}-\frac{1}{4\pi\epsilon_{0}}.\frac{(\pi R^{3} \rho/6)}{4R^{2}}$
=$\frac{23 \rho R}{96\epsilon_{0}}=\frac{23 \rho R}{(16)(6)\epsilon_{0}}$
$\therefore$ k=6