Answer:
Option B
Explanation:
If l current flows through the circular loop, then magnetic flux at the location of square loop is
$B=\frac{\mu_{0}IR^{2}}{2(R^{2}+Z^{2})^{3/2}}$
Substituting the value of Z=$(\sqrt{3}R)$, we have
$B= \frac{\mu_{0}I}{16 R}$
Now, total flux through the square loop is
$\phi_{T}=NBS \cos \theta$
=$=(2)\left(\frac{\mu_{0}T}{16R}\right)a^{2} \cos 45^{0}$
Mutual inductance
$M=\frac{\phi_{T}}{l}=\frac{\mu_{0}a^{2}}{2^{7/2}R}$
$\therefore$ p=7