Answer:
Option B
Explanation:
Using the lens formula
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
or $\frac{1}{v}=\frac{1}{u}+\frac{1}{f_{1}}+\frac{1}{f_{2}}$
= $\frac{1}{u}+(n_{1}-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Substiuting the value , we get
$\frac{1}{v}=\frac{1}{-40}+(1.5-1)\left(\frac{1}{14}-\frac{1}{\infty}\right)+$
$ (1.2-1)\left(\frac{1}{\infty}-\frac{1}{-14}\right)$
Solving this equation , we get
v=+40 cm