Answer:
Option B
Explanation:
Given ,$|z-3-2 i| \leq2$....(i)
To find minimum of |2z-6+5i|
or $2|z-3+ \frac{5}{2}i|$
Using triangle inequality
i.e, $||z_{1}|-|z_{2}|| \leq |z_{1}+z_{2}|$
$\therefore$ $|z-3+ \frac{5}{2} i|$
$= |z-3-2i+2i+\frac{5}{2}i|$
=$|(z-3-2i)+\frac{9}{2} i| \geq |z-3-2i| -\frac{9}{2}|$
$\geq |2-\frac{9}{2} |\geq \frac{5}{2} \Rightarrow |z-3+\frac{5}{2}i| \geq \frac{5}{2}$
or $ |2z-6+5i| \geq 5$