1) Let f(θ)=sin[tan−1(sinθ√cos2θ)] where −π4<θ<π4 .Then. the value of dd(tanθ)(f(θ)) is A) 5 B) 2 C) 4 D) 1 Answer: Option DExplanation: f(θ)=sin(tan−1sinθ√cos2θ)−π4<θ<π4 Let tan−1sinθ√cos2θd=ϕ ⇒ tanϕ=sinθ√cos2θ ∴ sinϕ=sinθ√sin2θ+cos2θ =sinθ√1−sin2θ=sinθcosθ=tanθ ∴ f(θ)=sinϕ=tanθ ⇒ df(θ)d(tanθ)=1