Answer:
Option D
Explanation:
$f(\theta)= \sin\left(\tan^{-1}\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)-\frac{\pi}{4}< \theta <\frac{\pi}{4}$
Let $\tan^{-1} \frac{\sin \theta}{\sqrt{\cos 2 \theta}d}=\phi$
$\Rightarrow$ $\tan \phi = \frac{\sin \theta}{\sqrt{\cos 2 \theta}}$
$\therefore$ $\sin \phi=\frac{\sin \theta}{\sqrt{ \sin^{2} \theta+\cos 2 \theta}}$
=$\frac{\sin \theta}{\sqrt{1-\sin^{2} \theta}}= \frac{\sin \theta}{\cos \theta}=\tan \theta$
$\therefore$ $f(\theta)= \sin \phi=\tan \theta$
$\Rightarrow$ $\frac{d f(\theta)}{d( \tan \theta)}=1$