Answer:
Option D
Explanation:
Given, $f(1)= \frac{1}{3}$ and $6\int_{1}^{x} f(t) dt$
= $3x f(x)-x^{3}$ for all x $\geq$ 1
Using (Newton-Leibnitz formula),
On Differentiating both sides,
$6 f(x).1-0-3f(x)+3x f'(x)-3x^{2}$
$\Rightarrow$ $3 x f'(x)-3f(x)=3x^{2}$
$\Rightarrow$ $f'(x)-\frac{1}{x} f(x)=x$
$\Rightarrow$ $\frac{x f'(x)-f(x)}{x^{2}}=1 \Rightarrow \frac{d}{dx}\left\{\frac{f(x)}{x}\right\}=1$
On integreating both sides,
$\frac{f(x)}{x}=x+C$ $[ \because f(1)=\frac{1}{3}]$
$\Rightarrow$ $\frac{1}{3}=1+C \Rightarrow C=-\frac{2}{3}$
Now, $f(x)=x^{2}-\frac{2}{3} x$
$\Rightarrow$ $f(2)=4-\frac{4}{3}=\frac{8}{3}$
Note Here, f(1) =2 does not satisfy given function
$\therefore$ $f(1)=\frac{1}{3}$
For that , $f(x)=x^{2}-\frac{2}{3} x$
and $f(2)=4-\frac{4}{3}= \frac{8}{3}$