Answer:
Option D
Explanation:
Given, f(1)=13 and 6∫x1f(t)dt
= 3xf(x)−x3 for all x ≥ 1
Using (Newton-Leibnitz formula),
On Differentiating both sides,
6f(x).1−0−3f(x)+3xf′(x)−3x2
⇒ 3xf′(x)−3f(x)=3x2
⇒ f′(x)−1xf(x)=x
⇒ xf′(x)−f(x)x2=1⇒ddx{f(x)x}=1
On integreating both sides,
f(x)x=x+C [∵f(1)=13]
⇒ 13=1+C⇒C=−23
Now, f(x)=x2−23x
⇒ f(2)=4−43=83
Note Here, f(1) =2 does not satisfy given function
∴ f(1)=13
For that , f(x)=x2−23x
and f(2)=4−43=83