1)

Let  f:[1,)(2,)  be a differentiable function such that /(1) = 2. If 6x1f(t)dt=3xf(x)x3  for all x1  , then the value of f(2) is 


A) 8/4

B) 5/3

C) 5/4

D) 8/3

Answer:

Option D

Explanation:

 Given, f(1)=13 and  6x1f(t)dt

  = 3xf(x)x3 for all x 1

 Using (Newton-Leibnitz formula),

On Differentiating both sides,

 6f(x).103f(x)+3xf(x)3x2

    3xf(x)3f(x)=3x2

   f(x)1xf(x)=x

    xf(x)f(x)x2=1ddx{f(x)x}=1

 On integreating  both sides,

 f(x)x=x+C                [f(1)=13]

   13=1+CC=23

 Now,  f(x)=x223x

     f(2)=443=83

Note      Here, f(1) =2  does not satisfy given function

     f(1)=13

 For that  , f(x)=x223x

 and f(2)=443=83