Answer:
Option A,B,C,D
Explanation:
Inside a conducting shell, electric field is always zero. Therefore, option (a) is correct. When the two are connected. their potentials become the same.
$\therefore$ $V_{A}=V_{B}$
or $ \frac{Q_{A}}{R_{A}}=\frac{Q_{B}}{R_{B}}$ $\left( \therefore V= \frac{1}{4 \pi \epsilon_{0}}.\frac{Q}{R}\right)$
Since, $R_{A} >R_{B}$
$\therefore$ $Q_{A} > Q_{B}$
$\therefore$ option (b) is correct
Potential is also equal to
$V= \frac{\sigma R}{\epsilon_{0}}$
$V_{A}=V_{B}$
$\therefore$ $\sigma_{A} R_{A}=\sigma_{B} R_{B}$
or $ \frac{ \sigma _{A}}{\sigma_{B}}= \frac{ R_{B}}{R_{A}}$
$\therefore$ Option (c) is correct
Electric field on surface
$E= \frac{\sigma}{E_{0}}$ or $E \propto \sigma$
or $ \sigma_{A} < \sigma_{B}$
Since, $ \sigma_{A} < \sigma_{B}$
$\therefore$ $E_{A} < E_{B}$
$\therefore$ Option (d) is also correct
$\therefore$ Correct options are (a),(b) ,(c) and (d)
Analysics of Question
(i) Question is simple
(ii) $E= \frac{1}{4 \pi \epsilon_{0}}\frac{Q}{R^{2}}=\frac{\sigma}{\epsilon_{0}}$ ( on surface)
As $ \sigma $= surface charge density
= $\frac{Q}{4 \pi R^{2}}$
(iii) $V= \frac{1}{4 \pi \epsilon_{0}}\frac{Q}{R^{}}=\frac{\sigma R}{\epsilon_{0}}$