Answer:
Option C
Explanation:
Let $1$ man's hour's work $=x$, $1$ woman's $1$ hour's work $=y$ and $1$ boy's $1$ hour's work $=z$.
Then, $x+3y+4z=\frac{1}{96}$ ---(1)
$2x+8z=\frac{1}{80}$ ---(2)
$2x+3y=\frac{1}{120}$ ---(3)
Adding (2) and (3) and subtracting (1) from it, we get : $3x+4z=\frac{1}{96}$---(4)
From (2) and (4), we get $x=\frac{1}{480}$.
Substituting, we get : $y=\frac{1}{720}$, $z=\frac{1}{960}$.
($5$ men + $12$ boy's) $1$ hour's work $=\left(\frac{5}{480}+\frac{12}{960}\right)$ $=\left(\frac{1}{96}+\frac{1}{80}\right)$ $=\frac{11}{480}$.
$\therefore$ $5$ men and $12$ boys can do the work in $\frac{480}{11}$
i.e, $43\frac{7}{11}$ hours.