1)

Find the units digit in $(264)^{102}+(264)^{103}$


A) 0

B) 6

C) 4

D) 2

Answer:

Option A

Explanation:

Required units digit=units digit in $(4)^{102}+(4)^{103}$

$4^{2}$ gives unit digit 6

$(4)^{102}$ gives unit digit 6

$(4)^{103}$ gives unit digit of $6\times 4=4$ 

Unit's digit in (264)^{102} +(264)^{103}=6+4=0