1) Find the units digit in $(264)^{102}+(264)^{103}$ A) 0 B) 6 C) 4 D) 2 Answer: Option AExplanation:Required units digit=units digit in $(4)^{102}+(4)^{103}$ $4^{2}$ gives unit digit 6 $(4)^{102}$ gives unit digit 6 $(4)^{103}$ gives unit digit of $6\times 4=4$ Unit's digit in (264)^{102} +(264)^{103}=6+4=0