Answer:
Option A
Explanation:
$\frac{1}{(216)^{-\frac{2}{3}}}$ $ +\frac{1}{(256)^{-\frac{3}{4}}}$ $+\frac{1}{(32)^{-\frac{1}{5}}}$
$=\frac{1}{(6^{3})^{-\frac{2}{3}}}$ $ +\frac{1}{(4^{4})^{\left(-\frac{3}{4}\right)}}$ $+\frac{1}{(2^{5})^{-\frac{1}{5}}}$
$=\frac{1}{6^{3} \times \frac{(-2)}{3}}$ $+\frac{1}{4^{4}\times \frac{(-3)}{4}}$ $+\frac{1}{2^{5} \times \frac{-1}{5}}$
$=\frac{1}{6^{-2}}$ $+\frac{1}{4^{-3}}$ $+\frac{1}{2^{-1}}$
$=6^{2}+4^{3}+2^{1}$
$=(36+64+2)=102$