Answer:
Option A
Explanation:
$\frac{3\sqrt{12}}{2\sqrt{28}}\times\frac{\sqrt{98}}{2\sqrt{21}}$
$=\frac{3\sqrt{3\times4}}{2\sqrt{7\times4}}\times\frac{\sqrt{49\times2}}{2\sqrt{21}}$
$=\frac{6\sqrt{3}}{4\sqrt{7}}\times\frac{7\sqrt{2}}{2\sqrt{21}}$
$=\frac{21\sqrt{6}}{4\sqrt{7\times21}}=\frac{21\sqrt{6}}{28\sqrt{3}}$
$=\frac{3}{4}\sqrt{2}=\frac{3}{4}\times1.414=3\times0.3535=1.0605$