Answer:
Option A
Explanation:
Suppose $X$ invests Rs. $x$.
I gives : $R_{1}$ $=\frac{39}{8}\%$, $R_{2}$ $=\frac{41}{8}\%$.
Increase in $SI$ = Rs. $25$.
$\Rightarrow \left(\frac{x\times 1\times\frac{41}{8}}{100}\right)$ $-\left(\frac{x\times 1\times\frac{39}{8}}{100}\right)$ $=25$
$\Rightarrow (41x-39x)$ $=(25\times 800)$ $\Rightarrow x$ $=\left(\frac{25\times 800}{2}\right)$ $=10000$.
Thus, I only gives the answer.
II gives, $SI$ = Rs. $x$, $R=8\%$ and $T=\frac{25}{2}$ years.
$P$ $=\frac{100\times SI}{R\times T}$ $=\left(\frac{100\times x}{8\times 25}\times 2\right)$
Thus, $P$ is not obtained.
$\therefore$ I alone is sufficient to get the answer and II is not sufficient to get the answer.
$\therefore$ Correct answer is (A).