Answer:
Option D
Explanation:
Let the sum invested in Scheme $A$ be Rs. $x$ and that in Scheme $B$ be Rs. $(14900-x)$
$\left(\frac{(x\times 16\times 3)}{100}\right)$ $+\left(\frac{((14900-x)\times 13\times 3)}{100}\right)$ $=6261$
$\Rightarrow 48x-39x$ $=626100-(14900\times 39)$
$\Rightarrow 9x$ $=45000$
$\Rightarrow x$ $=5000$
So, sum invested in Scheme $B$ = Rs. $(14900-5000)$ = Rs. 9900