Answer:
Option C
Explanation:
Let the number of 25p, 10p, 5p coins be $x$, $2x$, $3x$ respectively.
Then, sum of their values $=\left(\frac{25x}{100}+\frac{10\times 2x}{100}+\frac{5\times 3x}{100}\right)=30$
$\Rightarrow\frac{x}{4}+\frac{2x}{10}+\frac{3x}{20}$ $=30$
$ \frac{5x+4x+3x}{20}=30$ $\Rightarrow 12x=600$ $\Rightarrow x=50$.
$\therefore$ Number of 5p coins $=3x$ $= 150$