Answer:
Option C
Explanation:
Part filled in $2$ hours $=\frac{2}{6}$ $=\frac{1}{3}$
Remaining part $=\left(1-\frac{1}{3}\right)$ $=\frac{2}{3}$.
$\therefore$ $(X+Y)$’s $7$ hour’s work $=\frac{2}{3}$.
$(X+Y)$’s $1$ hour’s work $=\frac{2}{21}$.
$\therefore$ $Z$’s $1$ hour’s work = $\{(X+Y+Z)$’s $1$ hour’s work$\}$ - $\{(X+Y)$’s $1$ hour’s work$\}$
$=\left(\frac{1}{6}-\frac{2}{21}\right)$ $=\frac{1}{14}$
$\therefore$ $Z$ alone can fill the tank in 14 hours