Answer:
Option D
Explanation:
No. of girls $= \frac{\left( 2500 \times 20 \right)}{100}$ $= 500$.
No of biys $= 2500 - 500 = 2000$.
No. of boys who passed $= \frac{\left( 2000 \times 95 \right)}{100}$ $= 1900$.
No. of girls who passed $=\frac{\left(500\times 60\right)}{100}$ $= 300$.
Total candidates passed $= 1900 + 300 = 2200$.
% of passed candidates $=\left(\frac{2200}{2500}\right) \times 100$ = 88%