1) If $\log_{2}{(a^{2}-1)}-\log_{2}{(a+1)}=3$, find the value of a. A) 9 B) 8 C) 7 D) 6 Answer: Option AExplanation:$\log_{2}{(a^2-1)} - \log_{2}{a+1}$ =$\log_{2}{\frac{(a^{2}-1)}{a+1}}$ =$\log_{2}{\frac{(a+1)(a-1)}{a+1}}$ =$\log_{2}{a-1}$ Given, $\log_{2}{a-1}=3$ ie $2^{3} = a-1$ 8 = a-1 a = 9