1)

If log 2 $=x$, log 3 $=y$ and log 7 $=z$, then the value of log $(4.\sqrt[3]{69})$ is :


A) $2x+\frac{2}{3}y$ $-\frac{1}{3}z$

B) $2x+\frac{2}{3}y$ $+\frac{1}{3}z$

C) $2x-\frac{2}{3}y$ $+\frac{1}{3}z$

D) $-2x+\frac{2}{3}y$ $+\frac{1}{3}z$

Answer:

Option B

Explanation:

$log (4.\sqrt[3]{63})$ = log 4 + log $(\sqrt[3]{63})$

= log 4 + log $(63)^{1/3}$

= log $(2^{2})$ + log $(7\times 3^{2})^{1/3}$

= 2log 2 $+\frac{1}{3}$ log 7$+\frac{2}{3}$ log 3

$=2x+\frac{1}{3}z$ $+\frac{2}{3}y$