Answer:
Option A
Explanation:
I. $S.I.$ = Rs. $1020$, $R$ $=12\%$ p.a and $T$ = $1$ year.
$\therefore P$ $=\frac{100\times S.I.}{R\times T}$
$\Rightarrow P$ = Rs. $\left(\frac{100\times 1020}{12\times 1}\right)$ = Rs. $8500$.
$\therefore$ $C.I$ for $2$ years = Rs. $\left[8500\times \left\{\left(1+\frac{12}{100}\right)^{2}-1\right\}\right]$
II. gives : only $P$ and $T$
$\therefore$ II alone does not give the answer.
$\therefore$ Correct answer is (A).