Answer:
Option B
Explanation:
$P\left[\left(1+\frac{10}{100}\right)^{4}\right]$ $-P\left[\left(1+\frac{20}{100}\right)^{2}\right]$ $= 482$
$P[\left(1+\frac{10}{100}\right)^{4}$ $-\left(1+\frac{20}{100}\right)^{2}]$ $= 482$
$\Leftrightarrow P[\left(\frac{11}{10}\times\frac{11}{10}\times\frac{11}{10}\times\frac{11}{10}\right)$ $-\left(\frac{6}{5}\times\frac{6}{5}\right)]$ $=482$
$\therefore P$ = 20,000