Answer:
Option D
Explanation:
Let the speeds of boat and stream be $x$ and $y$ km/hr respectively.
Then, Rate downstream $=(x+y)$ km/hr and Rate upstream $=(x-y)$ km/hr
Given $\frac{d}{(x+y)} +\frac{d}{( x-y )}$ $=5$ hrs $15$ minutes $=\frac{21}{4}$ hours
and $\frac{2d}{(x-y)}$ $= 7$ $=\frac{d}{(x-y)}$ $\frac{7}{2}$
$\Rightarrow\frac{d}{(x+y)}$ $=\frac{21}{4}-\frac{7}{2}$ $=\frac{7}{4}$
$\Rightarrow\frac{2d}{(x+y)}$ $=\frac{7}{2}$
Hence, he takes $\frac{7}{2}$ hours to row $2d$ km distance downstream.